

MAGGIE MAE OF RUBY DOODLES

DNA Test Report

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

BREED ANCESTRY

Poodle (Standard) : 75.0%
Golden Retriever : 25.0%

GENETIC STATS

Predicted adult weight: **50 lbs** Life stage: **Young adult** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-15272064 Swab number: 31020010104118

BREED ANCESTRY BY CHROMOSOME

Our advanced test identifies from where Maggie Mae inherited every part of the chromosome pairs in her genome.

	Breed colors:						
		Pood	le (Standard)	Golden F	Retriever		
1		2		3		4	
5		6		7		8	
9		10		11		12	
13		14		15		16	
17		18		19		20	
21		22		23		24	
25		26		27		28	
29		30		31		32	
33		34		35	=	36	
37	=	38					

MAGGIE MAE OF RUBY DOODLES

DNA Test Report

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

POODLE (STANDARD)

The Standard Poodle is a popular, water-loving dog used for centuries as a bird dog and popular pet. Poodles were established in Germany by the 15th century. Oddly enough, they are the national dog breed of France, and they were the most popular breed of dog in the United States throughout the 1960s and 70s. They're still quite popular today, owing to their intelligence, trainability, and non-shedding coats. Although well-known for their fancy fur, they're one of the most intelligent breeds of dog and require a lot of exercise and stimulation.

Fun Fact

From 1989 to 1991, John Suter raced a team of Poodles in the Iditarod. Although his teams placed in the back half of the pack, he managed to win \$2,000 in prize money before retiring his poodle team. The Iditarod has since changed its rules to specify that only northern dog breeds can compete.

MAGGIE MAE OF RUBY DOODLES

DNA Test Report

Fun Fact

A Golden Retriever is also pictured in the Guinness Book of World's Records for "Most tennis balls held in mouth" (with 6). Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

GOLDEN RETRIEVER

The Golden Retriever was developed in the early 19th century as an ideal hunting companion, able to retrieve birds on both land and water in the marshy Scottish countryside. Their friendliness and intelligence makes the both a popular family pet and an excellent working dog, well suited for being a service dog, therapy dog or for search and rescue. The third most popular breed in the US, the American and Canadian Goldens are generally lankier and darker than their British counterparts. Their wavy, feathered topcoat is water resistant, their undercoat helps them with thermoregulation and both coats have a tendency for heavy seasonal shedding. Goldens need lots of exercise (especially when younger), and their love of play and water means their owners usually get a lot of exercise too! In 2013, the 100th anniversary of Britain's Golden Retriever Club, Goldens from around the world came made the pilgrimage to the breed's birthplace in Scotland, where 222 of them posed in a single record-breaking photo. At the same time, the Golden Retriever Lifetime Study was getting started in the United States, recruiting 3,000 Golden Retrievers for a lifetime study aimed at understanding how genetics, lifestyle and environment influences healthy aging and cancer risk in Goldens.

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

MATERNAL LINE

Through Maggie Mae's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: B1

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

HAPLOTYPE: B84

Part of the large B1 haplogroup, this haplotype occurs most frequently in Golden Retrievers, Beagles, and Staffordshire Terriers.

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity loci. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the **Em** allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of **Em** but one or two copies of the **Eg** allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

K Locus (CBD103)

The K Locus **K**^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the **K**^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one **K**^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the **k**^y**k**^y genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as **K**^B**k**^y may be brindle rather than black or brown.

No dark hairs anywhere (ee) RESULT

Not expressed (K^Bk^y)

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci LINKAGE

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any pigmented hair likely apricot or red (Intense Red Pigmentation)

RESULT

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Not expressed (a^ta^t)

Not expressed (DD)

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT Cocoa (HPS3) Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. No co alleles, not Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. expressed (NN) Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Likely black colored Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. nose/feet (Bb) E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Not expressed (NI) Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus at allele, so dogs that do not express at are not influenced by this gene. S Locus (MITF) The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in

white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely to have little to no white in coat (SS)

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "nonexpressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A) LINKAGE

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

No merle alleles (mm)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

TRAITS: OTHER COAT TRAITS

TRAIT	RESULT
Furnishings (RSPO2) LINKAGE	
Dogs with one or two copies of the F allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two I alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.	Likely furnished (mustache, beard, and/or eyebrows) (FF)
Coat Length (FGF5)	
The FGF5 gene is known to affect hair length in many different species, including cats, dogs, mice, and humans. In dogs, the Lh allele confers a long, silky haircoat as observed in the Yorkshire Terrier and the Long Haired Whippet. The ancestral Sh allele causes a shorter coat as seen in the Boxer or the American Staffordshire Terrier. In certain breeds (such as Corgi), the long haircoat is described as "fluffy."	Likely long coat (LhLh)
Shedding (MC5R)	
Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene.	Likely light shedding (CT)
Coat Texture (KRT71)	

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Hairlessness (FOXI3) LINKAGE

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth
 shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and
 Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely
 to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has
 never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that
 this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

RESULT

Likely medium or long

muzzle (CC)

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

Likely normal-length

tail (CC)

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Blue Eye Color (ALX4) LINKAGE

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

Less likely to have blue

eyes (NN)

DNA Test Report	Test Date: January 9th, 2021	embk.me/maggiemaeofrubydoodles
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Smaller (II)
The I allele is associated with smaller body size.		
Body Size (IGFR1)		Larger (GG)
The A allele is associated with smaller body size.		
Body Size (STC2)		Larger (TT)
The A allele is associated with smaller body size.		
Body Size (GHR - E191K)		Larger (GG)
The A allele is associated with smaller body size.		20.30. (00)
Body Size (GHR - P177L)		Larger (CC)
The T allele is associated with smaller body size.		

embk.me/maggiemaeofrubydoodles

TRAIT	RESU
Altitude Adaptation (EPAS1)	
This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those found at high elevations. Dogs with at least one A allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.	Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE	
This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to dogs with no copies of the mutation (NN), dogs with one (ND) or two (DD) copies of the mutation are more likely to have high food motivation, which can cause them to eat excessively, have higher body fat percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We measure this result using a linkage test.	Normal food motivation (NN)

Test Date: January 9th, 2021

MAGGIE MAE OF RUBY DOODLES

DNA Test Report

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

HEALTH REPORT

How to interpret Maggie Mae's genetic health results:

If Maggie Mae inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Maggie Mae for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 213 genetic health risks we analyzed, we found 1 result that you should learn about.

Notable results (1)

ALT Activity

Clear results

Breed-relevant (15)

Other (197)

DNA Test Report	Test Date: January 9th, 2021	embk.me/maggiemaeofrubydoodles
-----------------	------------------------------	--------------------------------

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Maggie Mae, and may influence her chances of developing certain health conditions.

Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant)	Clear
O Degenerative Myelopathy, DM (SOD1A)	Clear
O Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant)	Clear
GM2 Gangliosidosis (HEXB, Poodle Variant)	Clear
Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)	Clear
Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant)	Clear
Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)	Clear
Muscular Dystrophy (DMD, Golden Retriever Variant)	Clear
Neonatal Encephalopathy with Seizures, NEWS (ATF2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)	Clear
Osteochondrodysplasia (SLC13A1, Poodle Variant)	Clear
Osteogenesis Imperfecta (COL1A1, Golden Retriever Variant)	Clear
Progressive Retinal Atrophy, prcd (PRCD Exon 1)	Clear
Von Willebrand Disease Type I, Type I vWD (VWF)	Clear

MAGGIE MAE OF RUBY DOODLES

DNA Test Report

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Maggie Mae. Review any increased risk or notable results to understand her potential risk and recommendations.

ALT Activity (GPT)	Notable
2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Adult-Onset Neuronal Ceroid Lipofuscinosis, NCL A, NCL 12 (ATP13A2, Tibetan Terrier Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear

MAGGIE MAE OF RUBY DOODLES

DNA Test Report	Test Date: January 9th, 2021	embk.me/maggiemaeofrubydoodles
OTHER RESULTS		
Canine Multiple System Degeneration (SE	RAC1 Exon 4, Chinese Crested Variant)	Clear
Ocanine Multiple System Degeneration (SE	RAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mortality (Y	ARS2)	Clear
Centronuclear Myopathy, CNM (PTPLA)		Clear
🔗 Cerebellar Hypoplasia (VLDLR, Eurasier Va	ariant)	Clear
Chondrodystrophy (ITGA10, Norwegian Ell	khound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAMTS20, I	Nova Scotia Duck Tolling Retriever Variant)	Clear
Ocbalamin Malabsorption (CUBN Exon 8, B	Beagle Variant)	Clear
Ocbalamin Malabsorption (CUBN Exon 53	, Border Collie Variant)	Clear
Ocllie Eye Anomaly (NHEJ1)		Clear
Omplement 3 Deficiency, C3 Deficiency (C3)	Clear
🔗 Congenital Hypothyroidism (TPO, Rat, Toy,	Hairless Terrier Variant)	Clear
Ongenital Hypothyroidism (TPO, Tenterfie	eld Terrier Variant)	Clear
⊘ Congenital Macrothrombocytopenia (TUB	B1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (C	COLQ, Labrador Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (C	CHAT, Old Danish Pointing Dog Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (C	CHRNE, Jack Russell Terrier Variant)	Clear
Ocongenital Stationary Night Blindness (LF	RIT3, Beagle Variant)	Clear

MAGGIE MAE OF RUBY DOODLES

DNA Test Report	Test Date: January 9th, 2021	embk.me/maggiemaeofrubydoodles
OTHER RESULTS		
Ocongenital Stationary Night Blindness	(RPE65, Briard Variant)	Clear
Craniomandibular Osteopathy, CMO (SI	LC37A2)	Clear
O Cystinuria Type I-A (SLC3A1, Newfound	lland Variant)	Clear
Orstinuria Type II-A (SLC3A1, Australian	n Cattle Dog Variant)	Clear
O Cystinuria Type II-B (SLC7A9, Miniature	Pinscher Variant)	Clear
Oay Blindness (CNGA3 Exon 7, German	Shepherd Variant)	Clear
Oay Blindness (CNGA3 Exon 7, Labrador	r Retriever Variant)	Clear
Oay Blindness (CNGB3 Exon 6, German	Shorthaired Pointer Variant)	Clear
O Deafness and Vestibular Syndrome of E	Dobermans, DVDob, DINGS (MYO7A)	Clear
Oemyelinating Polyneuropathy (SBF2/	MTRM13)	Clear
O Diffuse Cystic Renal Dysplasia and Hep	patic Fibrosis (INPP5E Intron 9, Norwich Terr	ier Variant) Clear
Dilated Cardiomyopathy, DCM1 (PDK4, I	Doberman Pinscher Variant 1)	Clear
Oilated Cardiomyopathy, DCM2 (TTN, D	oberman Pinscher Variant 2)	Clear
Ory Eye Curly Coat Syndrome (FAM83H	Exon 5)	Clear
Oystrophic Epidermolysis Bullosa (COL	7A1, Central Asian Shepherd Dog Variant)	Clear
Early Onset Cerebellar Ataxia (SEL1L, Fi	innish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Doberman Pi	nscher Variant)	Clear
O Enamel Hypoplasia (ENAM Deletion, Ita	lian Greyhound Variant)	Clear

DNA Test Report	Test Date: January 9th, 2021	embk.me/maggiemaeofrubydoodles
OTHER RESULTS		
🔗 Enamel Hypoplasia (ENAM SNP, Parson Rus	sell Terrier Variant)	Clear
O Episodic Falling Syndrome (BCAN)		Clear
Exercise-Induced Collapse, EIC (DNM1)		Clear
Sactor VII Deficiency (F7 Exon 5)		Clear
Samilial Nephropathy (COL4A4 Exon 3, Cocl	ker Spaniel Variant)	Clear
Setal-Onset Neonatal Neuroaxonal Dystrop	ny (MFN2, Giant Schnauzer Variant)	Clear
Glanzmann's Thrombasthenia Type I (ITGA2	B Exon 13, Great Pyrenees Variant)	Clear
Glanzmann's Thrombasthenia Type I (ITGA2	B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe diseas	e (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type IA, Von Gier	ke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Type IIIA, GSD III	A (AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Type VII, Phosph and English Springer Spaniel Variant)	ofructokinase Deficiency, PFK Deficiency (P	FKM, Whippet Clear
 Glycogen storage disease Type VII, Phosph Wachtelhund Variant) 	ofructokinase Deficiency, PFK Deficiency (P	FKM, Clear
GM1 Gangliosidosis (GLB1 Exon 2, Portugue	se Water Dog Variant)	Clear
🧭 GM1 Gangliosidosis (GLB1 Exon 15, Shiba In	u Variant)	Clear
🧭 GM1 Gangliosidosis (GLB1 Exon 15, Alaskan	Husky Variant)	Clear
GM2 Gangliosidosis (HEXA, Japanese Chin	Variant)	Clear
Goniodysgenesis and Glaucoma, Pectinate	Ligament Dysplasia, PLD (OLFM3)	Clear

DNA Test Report	Test Date: January 9th, 2021	embk.me/maggiemaeofrubydoodles
OTHER RESULTS		
Hemophilia A (F8 Exon 11, German Shepher	d Variant 1)	Clear
Hemophilia A (F8 Exon 1, German Shepherd	Variant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Variant)		Clear
Hemophilia B (F9 Exon 7, Terrier Variant)		Clear
Hemophilia B (F9 Exon 7, Rhodesian Ridgeb	back Variant)	Clear
Hereditary Ataxia, Cerebellar Degeneration	(RAB24, Old English Sheepdog and Gor	rdon Setter Variant) Clear
Hereditary Cataracts (HSF4 Exon 9, Australi	an Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratosis (FAM83	G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DSG1, F	Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39H2 II	ntron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNPK (SUV	39H2)	Clear
Hereditary Vitamin D-Resistant Rickets (VD	R)	Clear
Hypocatalasia, Acatalasemia (CAT)		Clear
Hypomyelination and Tremors (FNIP2, Weim	naraner Variant)	Clear
Hypophosphatasia (ALPL Exon 9, Karelian B	ear Dog Variant)	Clear
Ichthyosis (NIPAL4, American Bulldog Varia	nt)	Clear
Ichthyosis (SLC27A4, Great Dane Variant)		Clear
C Ichthyosis, Epidermolytic Hyperkeratosis (K	(RT10, Terrier Variant)	Clear

DNA Test Report	Test Date: January 9th, 2021	embk.me/maggiemaeofrubydoodles
OTHER RESULTS		
Inflammatory Myopathy (SLC25A12)		Clear
Inherited Myopathy of Great Danes (BIN1)		Clear
Inherited Selected Cobalamin Malabsorptic	on with Proteinuria (CUBN, Komondor Variant) Clear
Juvenile Epilepsy (LGI2)		Clear
Juvenile Laryngeal Paralysis and Polyneuro	ppathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1)		Clear
O L-2-Hydroxyglutaricaciduria, L2HGA (L2HGI	DH, Staffordshire Bull Terrier Variant)	Clear
S Lagotto Storage Disease (ATG4D)		Clear
Late Onset Spinocerebellar Ataxia (CAPN1)		Clear
Ate-Onset Neuronal Ceroid Lipofuscinosis	s, NCL 12 (ATP13A2, Australian Cattle Dog Vari	ant) Clear
Leonberger Polyneuropathy 1 (LPN1, ARHG	EF10)	Clear
O Leonberger Polyneuropathy 2 (GJA9)		Clear
O Lethal Acrodermatitis, LAD (MKLN1)		Clear
O Ligneous Membranitis, LM (PLG)		Clear
SGCD, Bo	ston Terrier Variant)	Clear
O Long QT Syndrome (KCNQ1)		Clear
O Lundehund Syndrome (LEPREL1)		Clear
Macular Corneal Dystrophy, MCD (CHST6)		Clear

DNA Test Report	Test Date: January 9th, 2021	embk.me/maggiemaeofrubydoodles

OTHER RESULTS

Malignant Hyperthermia (RYR1)	Clear
May-Hegglin Anomaly (MYH9)	Clear
Methemoglobinemia (CYB5R3)	Clear
Microphthalmia (RBP4 Exon 2, Soft Coated Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund Variant)	Clear
Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand Huntaway Variant)	Clear
Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant)	Clear
Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear
Multiple Drug Sensitivity (ABCB1)	Clear
Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1)	Clear
Musladin-Lueke Syndrome, MLS (ADAMTSL2)	Clear
Myasthenia Gravis-Like Syndrome (CHRNE, Heideterrier Variant)	Clear
Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant)	Clear
Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Dachshund Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)	Clear
Neonatal Cerebellar Cortical Degeneration (SPTBN2, Beagle Variant)	Clear
Neonatal Interstitial Lung Disease (LAMP3)	Clear

MAGGIE MAE OF RUBY DOODLES

DNA Test Report	Test Date: January 9th, 2021	embk.me/maggiemaeofrubydoodles
OTHER RESULTS		
Neuroaxonal Dystrophy, NAD (VPS11, Rottwe	eiler Variant)	Clear
Neuroaxonal Dystrophy, NAD (TECPR2, Spar	nish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PP	T1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TF	PP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CL	N5 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (Cl	N6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MF	SD8, Chihuahua and Chinese Crested Variar	nt) Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CL	N8, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CL	N8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscinosis, Cerebellar / Variant)	Ataxia, NCL4A (ARSG Exon 2, American Staffo	ordshire Terrier Clear
Oculocutaneous Albinism, OCA (SLC45A2, S	Small Breed Variant)	Clear
Osteogenesis Imperfecta (COL1A2, Beagle	Variant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dachs	shund Variant)	Clear
P2Y12 Receptor Platelet Disorder (P2Y12)		Clear
Paroxysmal Dyskinesia, PxD (PIGN)		Clear
Persistent Mullerian Duct Syndrome, PMDS	(AMHR2)	Clear
Platelet Factor X Receptor Deficiency, Scott	Syndrome (TMEM16F)	Clear

DNA Test Report	Test Date: January 9th, 2021	embk.me/maggiemaeofrubydoodles
OTHER RESULTS		
Polycystic Kidney Disease, PKD (PKD1)		Clear
O Pompe's Disease (GAA, Finnish and Swedi	sh Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exon 8)		Clear
Primary Ciliary Dyskinesia, PCD (NME5, Ala	skan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CCDC39 E	ixon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)		Clear
Primary Lens Luxation (ADAMTS17)		Clear
Primary Open Angle Glaucoma (ADAMTS17	Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10)	Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10)	Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucoma and Primary Variant) 	Lens Luxation (ADAMTS17 Exon 2, Chinese S	shar-Pei Clear
Progressive Retinal Atrophy (SAG)		Clear
Progressive Retinal Atrophy, CNGA (CNGA1	Exon 9)	Clear
Progressive Retinal Atrophy, crd1 (PDE6B, .	American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, crd4/cord1 (R	PGRIP1)	Clear
Progressive Retinal Atrophy, PRA1 (CNGB1))	Clear
Progressive Retinal Atrophy, PRA3 (FAM16	1A)	Clear
Progressive Retinal Atrophy, rcd1 (PDE6B B	Exon 21, Irish Setter Variant)	Clear

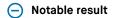
MAGGIE MAE OF RUBY DOODLES

DNA Test Report	Test Date: January 9th, 2021	embk.me/maggiemaeofrubydoodles
OTHER RESULTS		
Progressive Retinal Atrophy, rcd3 (F	PDE6A)	Clear
Protein Losing Nephropathy, PLN (N	IPHS1)	Clear
Pyruvate Dehydrogenase Deficienc	y (PDP1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR E	ixon 5, Basenji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR E	xon 7, Beagle Variant)	Clear
Pyruvate Kinase Deficiency (PKLR E	ixon 10, Terrier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR E	xon 7, Labrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (PKLR E	Exon 7, Pug Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Renal Cystadenocarcinoma and No	dular Dermatofibrosis (FLCN Exon 7)	Clear
Sensory Neuropathy (FAM134B, Bor	der Collie Variant)	Clear
Severe Combined Immunodeficience	cy, SCID (PRKDC, Terrier Variant)	Clear
Severe Combined Immunodeficience	cy, SCID (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (PLP1, En	glish Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disease	e, SPAID, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (COL11A2	, Labrador Retriever Variant)	Clear
Skin Fragility Syndrome (PKP1, Ches	sapeake Bay Retriever Variant)	Clear
Spinocerebellar Ataxia with Myokyr	nia and/or Seizures (KCNJ10)	Clear

"MAGGIE MAE" MAGGIE MAE OF RUBY DOODLES

DNA Test Report	Test Date: January 9th, 2021	embk.me/maggiemaeofrubydoodles
OTHER RESULTS		
Spongy Degeneration with Co	erebellar Ataxia 1 (KCNJ10)	Clear
Spongy Degeneration with Co	erebellar Ataxia 2 (ATP1B2)	Clear
O Thrombopathia (RASGRP1 Exe	on 5, American Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 Exe	on 5, Basset Hound Variant)	Clear
O Thrombopathia (RASGRP1 Exe	on 8, Landseer Variant)	Clear
Trapped Neutrophil Syndrome	e, TNS (VPS13B)	Clear
O Ullrich-like Congenital Muscu	ular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
O Unilateral Deafness and Vest	ibular Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
O Urate Kidney & Bladder Stone	es (SLC2A9)	Clear
O Von Willebrand Disease Type	e II, Type II vWD (VWF, Pointer Variant)	Clear
Von Willebrand Disease Type	III, Type III vWD (VWF Exon 4, Terrier Variant)	Clear
O Von Willebrand Disease Type	e III, Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje V	/ariant) Clear
Von Willebrand Disease Type	III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
X-Linked Hereditary Nephrop	athy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopath	hy (MTM1, Labrador Retriever Variant)	Clear
⊘ X-Linked Progressive Retinal	Atrophy 1, XL-PRA1 (RPGR)	Clear
X-linked Severe Combined Im	nmunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant	c) Clear
X-linked Severe Combined Im	nmunodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear

MAGGIE MAE OF RUBY DOODLES



DNA Test Report

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

HEALTH REPORT

ALT Activity

Maggie Mae of Ruby Doodles inherited one copy of the variant we tested for Alanine Aminotransferase Activity

Why is this important to your vet?

Maggie Mae has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Maggie Mae has this genotype, as ALT is often used as an indicator of liver health and Maggie Mae is likely to have a lower than average resting ALT activity. As such, an increase in Maggie Mae's ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

Test Date: January 9th, 2021

embk.me/maggiemaeofrubydoodles

9%

INBREEDING AND DIVERSITY

CATEGORY

Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

Your Dog's COI 9%

RESULT

High Diversity

How common is this amount of diversity in mixed breed dogs:

High Diversity

How common is this amount of diversity in mixed breed dogs:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.